
Chapter 12

You’re Getting Warm: Thermodynamics
In This Chapter
� Converting between temperature scales

� Working with linear expansion

� Calculating volume expansion

� Using heat capacities

� Understanding latent heat

Thermodynamics is the study of heat. It’s what comes into play when you drop an ice cube
into a cup of hot tea and wait to see what happens — if the ice cube or the tea wins out.

In physics, you often run across questions that involve thermodynamics in all sorts of situa-
tions. This chapter refreshes your understanding of the topic and lets you put it to use with
practice problems that address thermodynamics from all angles.

Converting Between Temperature Scales
You start working with questions of heat by establishing a scale for measuring temperature.
The temperature scales that you work with in physics are Fahrenheit, Celsius (formerly centi-
grade), and Kelvin.

Fahrenheit temperatures range from 32° for freezing water to 212° for boiling water. Celsius
goes from 0° for freezing water to 100° for boiling water. Following are the equations you use
to convert from Fahrenheit (F) temperatures to Celsius (C) and back again:

C F9
5 32= -^ h

F C5
9 32= +

The Kelvin (K) scale is a little different: Its 0° corresponds to absolute zero, the temperature
at which all molecular motion stops. Absolute zero is at a temperature of –273.15° Celsius,
which means that you can convert between Celsius and Kelvin this way:

K = C + 273.15
C = K – 273.15

To convert from Kelvin to Fahrenheit degrees, use this formula:

. .F K K5
9 273 15 32 5

9 459 67= - + = -^ h

Technically, you don’t say “degrees Kelvin” but rather “Kelvins,” as in 53 Kelvins. However,
people persist in using “degrees Kelvin,” so you may see that usage in this book as well.
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218 Part IV: Obeying the Laws of Thermodynamics 

1. What is 23° Fahrenheit in Celsius?

Solve It

2. What is 89° Fahrenheit in Celsius?

Solve It

3. What is 18° Celsius in Fahrenheit?

Solve It

4. What is 18° Celsius in Kelvin?

Solve It

Q. What is 54° Fahrenheit in Celsius?

A. The correct answer is 12° C.

1. Use this equation:

C F9
5 32= -^ h

2. Plug in the numbers:

.C F C9
5 32 0 55 54 32 12c= - = - =$^ ^ ^h h h
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223Chapter 12: You’re Getting Warm: Thermodynamics

13. You’re heating a 1.0 m3 glass block, coeffi-
cient of volume expansion 1.0 × 10–5 °C–1,
raising its temperature by 27°C. What is the
final volume of the block?

Solve It

14. You’re heating a 3.0 m3 gold block, coeffi-
cient of volume expansion 4.2 × 10–5 °C–1,
raising its temperature by 18°C. What is the
final volume of the block?

Solve It

Getting Specific with Heat Capacity
It’s a fact of physics that it takes 4186 J to raise the temperature of 1.0 kg of water by
1° C. But it takes only 840 J to raise the temperature of 1.0 kg of glass by 1° C.

You can relate the amount of heat, Q, it takes to raise the temperature of an object to
the change in temperature and the amount of mass involved. Use this equation:

Q = m·c �T

In this equation, Q is the amount of heat energy involved (measured in Joules if you’re
using the MKS system), m is the amount of mass, �T is the change in temperature, and
c is a constant called the specific heat capacity, which is measured in J/(kg-°C) in the
MKS system.

So it takes 4186 J of heat energy to warm up 1.0 kg of water 1.0°C. One calorie is
defined as the amount of heat needed to heat 1.0 g of water 1.0°C, so 1 calorie equals
4.186 J. Nutritionists use the food energy term Calorie (capital C) to stand for 1000
calories, 1.0 kcal, so 1.0 Calorie equals 4186 J. And when you’re speaking in terms of
heat, you have another unit of measurement to deal with: the British Thermal Unit
(Btu). 1.0 Btu is the amount of heat needed to raise one pound of water 1.0°F. To con-
vert Btus to Joules, use the relation that 1 Btu equals 1055 J.

If you add heat to an object, raising its temperature from To to Tf, the amount of heat
you need is expressed as:

�Q = m·c·(Tf – To)
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15. You’re heating a 15.0 kg copper block, spe-
cific heat capacity of 387 J/(kg-°C), raising
its temperature by 100°C. What heat do
you have to apply?

Solve It

16. You’re heating a 10.0 kg steel block, spe-
cific heat capacity of 562 J/(kg-°C), raising
its temperature by 170°C. What heat do
you have to apply?

Solve It

Q. You’re heating a 1.0 kg copper block, spe-
cific heat capacity of 387 J/(kg-°C), raising
its temperature by 45°C. What amount of
heat do you have to apply?

A. The correct answer is 17,400 J.

1. Use this equation:

Q = m·c·�T

2. Plug in the numbers:

Q = m·c·�T = (387)·(1.0)·(45) = 17,400 J
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17. You’re heating a 3.0 kg glass block, specific
heat capacity of 840 J/(kg-°C), raising its
temperature by 60°C. What heat do you
have to apply?

Solve It

18. You’re heating a 5.0 kg lead block, specific
heat capacity of 128 J/(kg-°C), raising its
temperature by 19°C. What heat do you
have to apply?

Solve It

19. You’re cooling a 10.0 kg lead block, specific
heat capacity of 128 J/(kg-°C), lowering its
temperature by 60°C. What heat do you
have to extract?

Solve It

20. You’re cooling a 80.0 kg glass block, spe-
cific heat capacity of 840 J/(kg-°C), lower-
ing its temperature by 16°C. What heat do
you have to extract?

Solve It
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226 Part IV: Obeying the Laws of Thermodynamics 

21. You put 7600 J into a 14 kg block of silver,
specific heat capacity of 235 J/(kg-°C). How
much have you raised its temperature?

Solve It

22. You add 10,000 J into a 8.0 kg block
of copper, specific heat capacity of
387 J/(kg-°C). How much have you raised
its temperature?

Solve It

Changes of Phase: Latent Heat
Heating blocks of lead is fine, but if you heat that lead enough, sooner or later it’s going
to melt. When it melts, its temperature stays the same until it liquefies, and then the
temperature of the lead increases again as you add heat. So why does its temperature
stay constant as it melts? Because the heat you applied went into melting the lead.
There’s a latent heat of melting that means that so many Joules must be applied per
kilogram to make lead change phase from solid to liquid.

The units of latent heat are J/kg.

There are three phase changes that matter can go through — solid, liquid, and gas —
and each transition has a latent heat:

� Solid to liquid: The latent heat of melting (or heat of fusion), Lf, is the heat per
kilogram needed to make the change between the solid and liquid phases (such
as when water turns to ice).

� Liquid to gas: The latent heat of vaporization, Lv, is the heat per kilogram needed
to make the change between the liquid and gas stages (such as when water boils).

� Solid to gas: The latent heat of sublimation, Ls, is the heat per kilogram needed
to make the change between the solid and gas phases (such as the direct subli-
mation of dry ice (CO2) to the vapor state).

The latent heat of fusion of water is about 3.35 × 105 J/kg. That means it takes 3.35 × 105 J
of energy to melt 1 kg of ice.
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23. You have 100.0 g of coffee in your mug at
80°C. How much ice at 0.0°C would it take
to cool 100.0 g of coffee at 80°C to 65°C?

Solve It

24. You have 200.0 g of cocoa at 90°C. How
much ice at 0.0°C do you have to add to
the cocoa (assuming that it has the specific
heat capacity of water) to cool it down to
60°C?

Solve It

Q. You have a glass of 50.0 g of water at room
temperature, 25°C, but you’d prefer ice
water at 0°C. How much ice at 0.0°C do you
need to add?

A. The correct answer is 15.6 g.

1. The heat absorbed by the melting ice
must equal the heat lost by the water
you want to cool. Here’s the heat lost by
the water you’re cooling:

�Qwater = m·c �T = m·c·(Tf – To)

2. Plug in the numbers:

�Qwater = m·c·�T = m·c·(Tf – To) = 
(0.050) (4186) (0 – 25) = –5.23 × 103 J

3. So the water needs to lose 5.23 × 103 J.
How much ice would that melt? That
looks like this, where Lm is the latent heat
of melting:

�Qice = mice·Lm

4. You know that for water, Lm is 3.35 × 105

J/kg, so you get this:

�Q = mice·Lm = mice·3.35 � 105

5. You know that equation has to be equal
to the heat lost by the water, so you can
set it to:

�Qice = �Qwater

In other words:

. /
.m L

Q
J kg

J∆
3 35 10

5 23 10
ice

m

water
5

3

#
#

= =

6. You know that the latent heat of melting
for water is L = 3.35 x 105 J/kg, which
means that:

.

. .m kg
3 35 10
5 23 10 1 56 10ice 5

3
2

#
# #= = -

So you need 1.56 × 10–2 kg, or 15.6 g of ice.
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Answers to Problems about Thermodynamics
The following are the answers to the practice questions presented earlier in this chapter.
You see how to work out each answer, step by step.

a –5° C

1. Use this equation:
C F9

5 32= -^ h

2. Plug in the numbers:

.C F C9
5 32 0 55 23 32 5c= - = - = -$^ ^ ^h h h

b 31.7° C

1. Use this equation:
C F9

5 32= -^ h

2. Plug in the numbers:

. .C F C32 9
5 0 55 89 32 31 7c= - = - =$ $^ ^ ^h h h

c 64° F

1. Use this equation:
F C5

9 32= +

2. Plug in the numbers:

.F C F5
9 32 1 8 18 32 64c= + = + =$^ ^h h

d 291° K

1. Use this equation:
K = C + 273.15

2. Plug in the numbers:

K = C + 273.15 = 18 + 273.15 = 291° K

e –255° C

1. Use this equation:
C = K – 273.15

2. Plug in the numbers:

C = K – 273.15 = 18 – 273.15 = –255° C

f –357° F

1. Convert Kelvins to Celsius:

C = K – 273 =57 – 273 = –216°C

2. Convert Celsius to Fahrenheit:

F C F5
9 32 357c= + =$

228 Part IV: Obeying the Laws of Thermodynamics 
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229Chapter 12: You’re Getting Warm: Thermodynamics

g 1.0 + 2.3 × 10–3 m

1. Use this equation:
�L = α·Lo·�T

2. Plug in the numbers:

�L = α Lo �T = (2.3 × 10–5)·(1.0)·(100) = 2.3 × 10–3 m

3. The final length is
Lf = Lo + �L = 1.0 + 2.3 × 10–3 m

h 1.0 + 5.6 × 10–3 m

1. Use this equation:
�L = α·Lo·�T

2. Plug in the numbers:

�L = α·Lo·�T = (1.4 × 10–5)·(2.0)·(200) = 5.6 × 10–3 m

3. The final length is
Lf = Lo + �L = 1.0 + 5.6 – 10–3 m

i 1.0 + 7.6 × 10–3 m

1. Use this equation:
�L = α·Lo·�T

2. Plug in the numbers:

�L = α·Lo·�T = (1.7 × 10–5)·(1.5)·(300) = 7.6 × 10–3 m

3. The final length is
Lf = Lo + �L = 1.0 + 7.6 × 10–3 m

j 1.0 + 2.9 × 10–3 m

1. Use this equation:
�L = α·Lo·�T

2. Plug in the numbers:

�L = α·Lo·�T = (2.9 × 10–5)·(2.5)·(40) = 2.9 × 10–3 m

3. The final length is
Lf = Lo + �L = 1.0 + 2.9 × 10–3 m

k 2.0 + 4.1 × 10–3 m3

1. Use this equation:
�V = β Vo �T

2. Plug in the numbers:

�V = β·Vo·�T = (6.9 × 10–5)·(2.0)·(30) = 4.1 × 10–3 m3

3. The final length is

Vf = Vo + �V = 2.0 + 4.1 × 10–3 m3
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l 2.0 + 2.0 × 10–3 m3

1. Use this equation:
�V = β·Vo·�T

2. Plug in the numbers:

�V = β·Vo·�T = (5.1 × 10–5)·(2.0)·(20) = 2.0 × 10–3 m3

3. The final length is
Vf = Vo + �V = 2.0 + 2.0 × 10–3 m3

m 1.0 + 2.7 × 10–4 m3

1. Use this equation:
�V = β·Vo·�T

2. Plug in the numbers:

�V = β·Vo·�T = (1.0 × 10–5)·(1.0)·(27) = 2.7 × 10–4 m3

3. The final length is
Vf = Vo + �V = 1.0 + 2.7 × 10–4 m3

n 3.0 + 2.3 × 10–3 m3

1. Use this equation:
�V = β·Vo·�T

2. Plug in the numbers:

�V = β·Vo·�T = (4.2 × 10–5)·(3.0)·(18) = 2.3 × 10–3 m3

3. The final length is
Vf = Vo + �V = 1.0 + 2.3 × 10–3 m3

o 5.8 × 105 J

1. Use this equation:
Q = m·c �T

2. Plug in the numbers:

Q = m·c·�T = (387) (15.0) (100) = 5.8 × 105 J

p 9.6 × 105 J

1. Use this equation:
Q = m·c·�T

2. Plug in the numbers:

Q = m·c·�T = (562) (10.0) (170) = 9.6 × 105 J

q 1.5 × 105 J

1. Use this equation:
Q = m·c·�T

2. Plug in the numbers:

Q = m·c·�T = (840) (3.0) (60) = 1.5 × 105 J
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r 1.2 × 104 J

1. Use this equation:
Q = m·c·�T

2. Plug in the numbers:

Q = m c �T = (128) (5.0) (19) = 1.2 × 104 J

s –7680 J

1. Use this equation:
Q = m·c·�T

2. Plug in the numbers:

Q = m·c·�T = (128) (10.0) (–60) = –7680

t –1.1 × 106 J

1. Use this equation:
Q = m·c·�T

2. Plug in the numbers:

Q = m·c·�T = (840) (80.0) (–16) = –1.1 × 106 J

u 2.3° C

1. Use this equation:
Q = m·c·�T

2. Solve for �T:

m c
Q

T∆=$

3. Plug in the numbers:

/ .m c
Q

T C∆ 7600 235 14 2 3c= = =$ ^ ^h h8 B

v 3.2° C

1. Use this equation:
Q = m·c �T

2. Solve for �T:

m c
Q

T∆=$

3. Plug in the numbers:

, / . .m c
Q

T C∆ 10 000 387 8 0 3 2c= = =$ $^ ^h h8 B

w 10.4 g

1. Calculate how much heat has to be lost by the coffee. Assuming it has the same specific heat
capacity as water, that’s:

�Qcocoa = m·c·�T = m·c·(Tf – To)

2. Plug in the numbers:

�Qcocoa = m·c·�T = m·c·(Tf – To) = (4186) (0.10) (80 – 65) = 6.28 × 103 J
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232 Part IV: Obeying the Laws of Thermodynamics 

3. How much ice do you need to remove 6.28 × 103 J? In this case, the heat supplied to the ice
not only must melt the ice:

�Qice = mice·Lm

But this heat also needs to raise the temperature of the water that comes from melting the ice
from 0°C to 65°C, so you have to add this:

�Qice = mice·Lm + mice·c·�T = mice·Lm + mice·c·(Tf – To)

4. This has to be equal to the heat lost by the coffee, so you get

6.28 × 103 J = mice·[Lm + c·(Tf – To)]

5. Solve for mice:
.m

L c T T
J6 28 10

ice

m f o

3#
=

+ -$ _ i9 C

6. Plug in the numbers:

.
.

. .m
L c T T

J J kg6 28 10
3 35 10 4186 65 0

6 28 10 0 0104ice

m f o

3

5

3#

#

#
=

+ -
=

+ -
=

$ $_ ^i h9 8C B

x 42 g

1. Find how much heat has to be lost by the cocoa. Assuming it has the same specific heat
capacity as water, that’s:

�Qcocoa = m·c·�T = cm(Tf – To)

2. Plug in the numbers:

�Qcocoa = m·c·�T = m·c·(Tf – To) = (0.20) (4186) (90 – 60) = 2.5 × 104 J

3. How much ice do you need to supply 2.5 × 104 J? In this case, the heat supplied to the ice, not
only must melt the ice:

�Qice = mice·Lm

But this heat also needs to raise the temperature of the water that comes from melting the ice
from 0°C to 60°C, so you have to add this:

�Qice = mice·Lm + mice·c �T = mice·Lm + mice·c·(Tf – To)

4. This has to be equal to the heat lost by the cocoa, so you get

2.5 × 104 J = mice·[Lm + c·(Tf – To)]

5. Solve for mice:
.m

L c T T
J2 5 10

ice

m f o

4#
=

+ -$ _ i9 C

6. Plug in the numbers:

.
.

. .m
L c T T

J J kg2 5 10
3 35 10 4186 60 0

2 5 10 0 042ice

m f o

4

5

4#

#

#
=

+ -
=

+ -
=

$ $_ ^i h9 8C B
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15. You have 29.0 g of zinc, atomic mass 65.41 u.
How many atoms do you have?

Solve It

16. You have 3.0 g of copper, atomic mass
63.546 u. How many atoms do you have?

Solve It

Ideally Speaking: The Ideal Gas Law
You can relate the pressure, volume, and temperature of an ideal gas with the ideal gas
equation. An ideal gas is one whose molecules act like points; no interaction occurs
among molecules except elastic collisions (that is, where kinetic energy is conserved).
In practice, all gases act like ideal gases to some extent, so the ideal gas law holds
fairly well. Here’s that law:

P·V = n·R·T

Here, P is pressure; n is the number of moles of gas you have; R is the universal gas
constant, which has a value of 8.31 J(/mole-K); and T is measured in Kelvins. The
volume, V, is measured in cubic meters, m3. Sometimes, you’ll see volume given in
liters, where 1.0 L = 10–3 m3. Using this law, you can predict the pressure of an ideal gas,
given how much you have of it, its temperature, and the volume you’ve enclosed it in.

One mole of ideal gas takes up 22.4 L of volume at 0°C and one atmosphere pressure,
which is 1.013 × 105 N/m2, where N/m2 (Newtons per square meter) is given its own
units, Pascals, abbreviated Pa.

You can also write the ideal gas law a little differently by using Avogadro’s Number, NA,
and the total number of molecules, N:

P·V = n·R·T = (N/NA) R·T

The constant R/NA is also called Boltzmann’s constant, k, and it has a value of 1.38 ×
10–23 J/K. Using this constant, the ideal gas law becomes

P·V = N·k·T
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17. You have 2.3 moles of air in your tire at
0°C, volume 12.0 L. What pressure is the
tire inflated to?

Solve It

18. You have a bottle of 2.0 moles of gas,
volume 1.0 L, temperature 100°C. What is
the pressure inside the bottle?

Solve It

Q. You have 1.0 moles of air in your tire at
0°C, volume 10.0 L. What is the gauge pres-
sure within the tire?

A. The correct answer is 1.3 × 105 Pa.

1. Use this equation:

PV = nRT

2. Solve for P:

P = nRT / V

3. Plug in the numbers to get the pressure
pushing out:

P = nRT / V = (1.0) (8.31) (273) / (10 × 10–3) = 
2.3 × 105 Pa

4. Subtract the pressure from the surround-
ing air, which pushes in, assuming that
the air is at 0°C too:

P = 2.3 × 105 – 1.013 × 105 = 1.3 × 105 Pa
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