How to do "Physics Math-Modelling"

So you want to "math model" a graph to understand, get an A, or just bored an interested, this is what you need to know how to do. See the pattern and succeed.

\mathbf{y}	$=$	\mathbf{m}	\mathbf{x}	+		
\downarrow	\downarrow	\mathbf{b}				
Dependent		Slope number and the division of the y-units	Independent	Variable	\quad	Intercept
:---:						
Variable						
(aka the y axis)						

General Equation

$$
v_{f}=a t+v_{i}
$$

Why Keep Intercept: The intercept is a big number and it makes sense that I can have an initial velocity.

General Equation

$$
\mathrm{F}=\mathrm{am} \quad \text { or } \quad \mathrm{F}=\mathrm{ma}
$$

Why Keep Intercept: The intercept seems small so it is probably zero but there is some error. Also, if I have zero mass or zero acceleration, I have zero Force.

Why Keep Intercept: The intercept is relatively big and it makes sense that I can have an initial velocity like for a battery or something.

Interpreting R^{2}

- R^{2} is a representation of how much correlation or "validity" a study has. An R^{2} may be between 0 and 1 .
- $\quad R^{2}=0$ means there is no correlation at all (e.g., eating bananas makes the planet Jupiter smaller)
- $\mathrm{R}^{2}=1$ means there is a complete $1: 1$ relationship of events (e.g., sleeping 6-7 hours a day reduces fatigue.)
- $R^{2}=0.5$ means that it is inconclusive and we don't know (e.g., yawning helps athletic performance....yes, no, maybe...no one knows)
- In this class you want R^{2} values above 0.7 and preferable around 0.9
- If you have a low percent error and a higher R^{2} value, you still cannot trust your data because you don't accurately documented a bad relationship.

